Обучение для риск менеджеров

Дэвид Восе: Озадачивающая математика неопределенности

0
  • Version 2014
  • Download 2143
  • File Size 1.32 MB
  • File Count 2
  • Create Date February 4, 2019
  • Last Updated February 6, 2019

Количественный анализ рисков требует от риск менеджера широкого спектра навыков. Одним из наиболее недооцененных навыков является умение работать с неопределенными переменным в имитационных моделях Монте-Карло, что является основой стандартной техники анализа рисков.

Такие простейшие действия как сложение, вычитание, умножение и деление мы научились выполнять с простыми числами еще в начальной школе, они для нас само-собой разумеющиеся и не вызывают вопросов. Трудно представить какую-либо финансовую модель, где хотя бы одно из этих действий не присутствовало. Тем не менее все вышеперечисленные действия не работают с распределениями так, как они работают с числами. Тревожно, что большинство риск менеджеров не знает об этих закономерностях и/или неправильно выполняют манипуляции с неопределенными переменными в ходе моделирования в финансовых моделях, возможно, потому, что подходят к этому вопросу с точки зрения привычных вычислений с простыми числами.

Большинство финансовых моделей строится на базе Excel с использованием надстроек, позволяющих применять метод Монте-Карло, точно также устроен и Vose ModelRisk.

Бытует мнение, что можно взять исходную финансовую модель (например, модель Cash Flow с расчетом EBITDA или NPV) и просто заменить любое неопределенное значение, выраженное детерминистически (одним числом), на функцию, генерящуюся случайным образом из заданного распределения, чтобы отразить неопределенность вышеупомянутого значения. Именно здесь и возникает ошибочное мнение, что на этом работа по заданию неопределенности завершается и всю остальную логику модели можно оставить без изменений.

А это на самом деле имеет значение и оказывает определенный эффект. Некорректные (частично правильно выполненные – прим. Белкова А.) действия с неопределенными переменными в процессе построения модели приводят к получению «околоправильных усредненных результатов», которые в последующем используются для «тестирования реальности». Проблема в том, что разброс значений вокруг данного «околоправильного усредненного результата» является неверным. В результате лицам, принимающим решение, предоставляется крайне неточная оценка неопределенности, влияния риска на различные варианты принятия решений. Некоторые могут понять, что результаты моделирования нереалистичны и отклонить их, другие – нет и будут принимать ошибочные решения, основываясь на некорректных данных.

Дэвид Восе призывает вас внимательно изучить представленные ниже примеры и поделиться данной информацией со всеми коллегами, кто занимается построением рисковых моделей или планирует данную работу.


FileAction
PDF версияDownload
MS Word версияDownload

Download

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Подписывайтесь на новый канал

Лучшие видео по управлению рисками и принятию решений на русском языке

ПОДПИСАТЬСЯ

×
5 мастер-классов по рискам онлайн РегистрацияClose